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Figure 1: Our method allows for complex edits of a single image: Given a single image input (a), we analyze within it a suitable
collection of local color variations to extract distinct illumination hues, two in this case (b); The input image can now be
modified simply by changing each illuminant hue, thus obtaining different color gradings with minimal user effort (c,d).
(Images from Tears of Steel open source movie - (CC) Blender Foundation | mango.blender.org)

ABSTRACT
Colorists often use keying or rotoscoping tools to access and edit
particular colors or parts of the scene. Although necessary, this is
a time-consuming and potentially imprecise process, as it is not
possible to fully separate the influence of light sources in the scene
from the colors of objects and actors within it. To simplify this
process, we present a new solution for automatically estimating
the color and influence of multiple illuminants, based on image
variation analysis. Using this information, we present a new color
grading tool for simply and interactively editing the colors of de-
tected illuminants, which fits naturally in color grading workflows.
We demonstrate the use of our solution in several scenes, evaluating
the quality of our results by means of a psychophysical study.
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1 INTRODUCTION
A crucial phase of movie post-production is that of color grading,
where creative experts alter the color, look, and feel of content so
that it visually expresses the intent of the director. The process of
color grading involves two key tasks. On the one hand, content
captured under different light source temperatures needs to be
adjusted to attain a consistent appearance. More crucially, colorists
can modify the image colors globally or locally to guide the focus of
the viewer, create a particular atmosphere and translate the vision
of the director into an image.

A commonly used technique to apply local color edits is color
keying, where a mask over a specific range of colors is created
and subsequently used for applying color edits. For example, to
diminish the red reflections on an actor’s face caused by a nearby
red light, a mask selecting reddish pixels might be created first.
Then the hue and saturation for these corresponding pixels might
be subtly adjusted. Although this method can provide pixel-perfect,
temporally coherent masks, it cannot separate the influence of
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illumination from underlying object colors. In the above example,
the red hue of the illumination will be modified in conjunction with
the actor’s skin tone, potentially leading to unnatural transitions.
Furthermore, color keying implies that all other red objects in the
scene will be selected and modified as well.

An alternative approach is rotoscoping, where a precise mask is
manually created by the professional to isolate a particular object
or area of the image. This process is very labor-intense and time-
consuming, and recent advances towards automation have reduced
the need of manual intervention [27]. However, the challenge of
separating and editing illumination in the scene remains open.

To address this task algorithmically, the influence of the illumi-
nation needs to be estimated in the image, which represents an
extremely ill-posed problem. It becomes particularly challenging
when working with a single image as input, since each pixel is the
integration of lighting, geometry and reflectances of the scene, all
unknown. In the context of intrinsic decomposition of single im-
ages, existing methods assume grey illuminant only to separate the
shading from the reflectance in the image, but cannot distinguish
the influence of different light sources [4, 20]. On the other hand,
several automatic methods exist for white balancing images — that
is to say removing the influence of colored light sources — which
could serve as a first step for extracting the influence of lighting
colors present in the scene, but they are either appropriate only
for scenes with a single illuminant [17], or require user input to
separate different lighting colors [9, 24]. All in all, none existing
method allows to edit light source influence independently without
altering the image quality, making this approach impracticable in
the context of movie production.

Our aim is to allow users to modify the color of multiple illumi-
nants with a tool that fits the color grading production workflow.
The requirements to add such tool to the colorists’ toolset are to
be intuitive, interactive and to preserve the image quality. Ulti-
mately, our goal is to provide a solution that allows users to modify
the color of each illuminant separately after capture, by detecting
and separating the influence of different light sources in mixed
illumination environments, using only a single image as input.

To achieve this goal, we observe that under mild assumptions,
similar local chrominance variations in the image are more likely
explained by the influence of a given illuminant than by reflectance.
Based on this observation, we carefully select and analyze local
color variations in the image. A suitable clustering of these varia-
tions in the CIELab color space, where chrominance and luminance
are decorrelated, allows us to infer the hue of different dominant
illuminants, as well as their respective zones of influence, with no
need to attempt intrinsic decomposition. As a result, the colors of
these illuminants can then be modified in the scene without affect-
ing contrast and details. Our solution allows for real-time edits in
an intuitive manner that fits naturally within existing color grading
tools and workflows.

In summary, our main contribution is two-fold:

• Amethod to estimate the hues of potential illuminantswithin
a single image by analyzing a selection of local chrominance
variations, with no need of user intervention or semantic
knowledge of the scene of the image.

• A new interactive tool for modifying the hue of each detected
illuminant and efficiently propagating such edits in real-time,
easing the process for practitioners specially for complex
edits.

One of the key objectives in this work is to meet the requirements
of movie post-production. We achieve high quality, natural results
through an intuitive workflow that fits color grading practices,
while offering real time performance.

2 RELATEDWORK
A common task in image manipulation is the modification of image
colors. This can be in order to correct an undesirable tint in the
image, as would be the case when white balancing photographs, or
to achieve a particular creative look or style, as is the case when
color grading a film. In either scenario, one can modify image pixels
directly without considering the image content, or can attempt
to understand the underlying image structure to modify scene
properties, such as lighting or materials, in a more meaningful sense.
Our work draws inspiration from both. As such key techniques
from both classes will be discussed here, focusing on creative image
edits.

2.1 Pixel-oriented Editing
Arguably the most common class of methods aimed at modifying
image colors and style is collectively known as color transfer. The
goal of such methods is to transfer the color characteristics of
a reference image that exemplifies a desired look onto another
image or video [19]. This can be achieved by globally modifying
the color distribution of the image [28, 29] or by considering higher
level, localized statistics in the image to guide the assignment of
colors [34].

Recently, the idea of color transfer has been employed in the
context of film color grading, offering an efficient way of applying
a particular style to a film. Rather than using a single reference
image, Xue et al. [35] analyzed clips from a variety of feature films,
extracting distinctive styles that could then be applied at will to
new content. A video reference was used by Bonneel et al. [6] to
define the target style for a sequence. Their approach requires a
user-driven separation of foreground and background such that
luminance histograms in “shadows”, “midtones” and “highlights”
bands can be modified akin to the manner a colorist would perform
such a task in grading software. A temporal filtering is performed,
smoothing points of higher temporal variation to ensure temporal
coherence in the final result.

Another alternative for modifying colors in an artistic context
is to extract a representative color palette from the image and
modify the palette colors directly. The main challenge in this case
is the extraction of a representative color palette, which clearly
separates different parts of the image in a meaningful manner.
Different statistical tools have been proposed to this end and for the
subsequent recoloring step, for example using optimized clustering
approaches based on k-means [11, 36]. Recently, the concept of color
palettes has been extended decomposing the image into coherent
layers, not only based on the color content but also considering
the structure [2, 33]. Although both palette and layer approaches
offer simple means for editing images that fit well within photo
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Figure 2: Proposed analysis pipeline: The input image (a) is over-segmented into compact super-pixels (b); Local radiance
variations in the image are sampled within super-pixels (c) and gathered into the orthogonal, opponent color space CIELab
(d); Spectral clustering using chrominance-based similarities and per-cluster orientation analysis is performed (e); The distinct
hues inferred from these clusters (f) explainmain observed shading variations and can be used to performper-illuminant color
grading of the scene. Note that the radiance variations in (c) have been spatially interpolated by gradient-aware filtering for
visualization. (Photograph copyright: Rémi Cozot.)

editing workflows, they do not explicitly separate illumination from
surface colors.

Although their goal is not primarily creative, white balancing
or color constancy techniques are also concerned with modifying
image colors, specifically for correcting the bias of illumination
colors in the scene [17, 22]. Traditionally white balancing methods
assume a single illuminant, but more recently, methods addressing
mixed illumination conditions have appeared. Considering multiple
illumination colors, Ebner et al. [18] compute, through filtering, lo-
cal average colors that are used as location-dependent white points.
Alternatively, the image can be divided into patches, and local,
per-patch white points may be computed and clustered to deter-
mine the most representative illuminant colors [3, 5, 23]. Although
these methods can work well in cases where the illumination varies
smoothly across a surface, they cannot handle sharp discontinu-
ities in the image, leading to potential halo artefacts. This has been
partially addressed by detecting different illuminants but offering a
global correction according to user preferences [12], however such
a solution would severely limits the editing freedom in a creative
context.

Within the context of mixed lighting, Hsu et al. [24] formulate
white balancing as a matting problem, whereby the contributions
of known light colors must be untangled. In addition to white bal-
ancing, this method allows modifying the chrominance of each
identified light source for subsequent editing. However, this ap-
proach is limited to two sources and critically relies on the capacity
of the user to estimate the color of the two illuminants. It also
requires that a given reflectance is observed under a number of dif-
ferent proportions of the two illuminants. The user-assisted method
of Boyadzhiev [9] tackles these issues in the context of mixed light-
ing, considering scenes with more than two sources. To achieve this
however, the user needs to indicate regions with similar reflectance,
as well as neutral regions that should be white, using scribbles on
the image.

2.2 Inverse Rendering based Approaches
The approaches discussed so far consider pixel information but
do not attempt to understand the underlying image structure. Al-
though pixel-based approaches remain simpler algorithmically,
knowledge of the geometry, materials and illumination interacting
in the original scene would permit more complex and precise edits
to be performed.

To retrieve the different contributions comprising the measured
radiance at each pixel, the inverse rendering problem can be con-
sidered. In each of the RGB channels, the radiance Ip ∈ Rmeasured
at pixel p in image I results from the sum of the radiances emitted
and reflected by corresponding 3D point xp in the directionωp of
the line of sight:

Ip = Le (xp ,ωp ) + Lr (xp ,ωp ). (1)

The reflected radiance reads:

Lr (xp ,ωp ) =

∫
Ωp

R(xp ,ωi ,ωp )Li (xp ,ωi )np ·ωidωi , (2)

whereR(xp , ., .),Li (xp , .),np andΩp are respectively the bi-directional
reflectance, the incident light, the surface normal and the viewing
hemisphere at point xp .

The method of Debevec et al. [14] recovers the different terms in
(1)-(2) with the help of a 3D scanned geometry and the acquisition
of both lighting and reflectance, which allows subsequent editing
of both lighting and reflectance. With the emergence of photogram-
metry, the method of Laffont et al. [26] allows lighting transfer
between multiple captures of the same scene under different light-
ing conditions, R and Li being estimated under the assumption of
Lambertian reflectance. The method of Duchêne et al. [16] allows
the editing of R and Li for outdoor scenes only captured under
similar lighting conditions, by inferring iteratively an image driven
completion of Li . For all the methods described above, the sun, the
sky as well as the influence of indirect illumination are considered
separately to estimate the incoming radiance received per point.
However, all these approaches can edit either R and/or Li .
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To the best of our knowledge, there exists no automatic single-
image method that allows the manipulation of the incoming radi-
ance. Existing single-image methods focus instead on retrieving the
reflectance R to edit it. The intrinsic decomposition model simplifies
the reflected radiances (2) in image I as the product of a Lambertian
reflectance R and a shading layer S , which is monochromatic in the
methods of [4, 8, 20].

Our method draws inspiration from all the above. Similar to auto-
matic white balancing approaches, we detect different illumination
colors and their influence, without input from the user. However,
we rely on some of the assumptions that underlie intrinsic images.
We target our approach towards color grading applications but do
not require the selection of reference content or the computation
of an intrinsic decomposition. Instead, we provide a simple editing
interface that fits color grading workflows because the main quality
for a production tool are to be interactive, to preserve quality and
to leave control to the artists. We consider that an artist is not going
to use a tool if a global driven solution updates his local constraints,
in the same way user assisted rotoscopy methods [27] are preferred
to automatic rotoscopy algorithms in the production industry [10].

3 THEORY AND OVERVIEW
In absence of emitted radiance and assuming Lambertian reflectance,
the rendering Equations 1-2 simplify to:

Ip = R(xp )
∫
Ωp

Li (xp ,ωi )np ·ωidωi︸                            ︷︷                            ︸
:=S (xp )

, (3)

where S(xp ) is the shading at pixel p, which depends on both the
surface geometry at point xp and the light source model at this
point. This is the classic decomposition into reflectance and shading
that intrinsic imaging aims to untangle.

Now let us consider two nearby points xp and xq that belong
to the same surface of the 3D scene and project onto neighboring
pixelsp andq in the image plane. Assuming that they share the same
reflectance, the local radiance variation between the two points
reads:

|Ip − Iq | = cpq |S(xp ) − S(xq )|, (4)
where R(xp ) = R(xq ) = cpq is independent of the lighting and of
the geometry, hence of the shading variation |S(xp ) − S(xq )|. Let’s
assume further that the lighting of the two points is primarily due
a same illuminant. The intensity of their respective illuminations
by this common source still depends on the surface orientation
and light attenuation. The intrinsic decomposition problem from a
single radiance variation remains ill-posed, even under our assump-
tions. However, if we consider multiple point pairs within the image
that approximately follow these assumptions, we observe that the
associated collection of radiance variations (4) in RGB space exhibit
several elongated arms. The intuition is that these few trends that
emerge from local radiance variations in the image are due to the
dominant illuminants in the scene.

It is difficult to analyze this behaviour in RGB space due to its cor-
relation properties [30]. However, we note that a light source emits
with a constant hue and saturation within all directions. Hue and
saturation of illumination are thus the same for the two points xp
and xq . Saturation being the ratio between chroma and luminance,

the chroma variation due to illumination with constant hue and
saturation will be correlated to the luminance variation. Based on
these observations, we can formulate our key insight: if a subset of
the local image radiance variations exhibit luminance and chroma
correlations that amount to the same hue, the corresponding pairs
of 3D points (and associated pixels) are likely to be lit by the same
illuminant of said hue.

To facilitate the discovery of such groups, we opt to work in the
CIELab opponent color space, which separates luminance (L) from
chrominance (a-b) information. Further, a constant hue in CIELab
translates to a constant ratio between the a and b components. To
illustrate this, we simulated radiance variations under constant
hue (with random perturbations) and correlated luminance/chroma
(Figure 3). In an orthogonal, opponent color space such as CIELab,
these variations are organized along 3D lines, which should make
their extraction possible from real data.

Figure 3: Local radiance variations due to a given illumi-
nation are likely to have similar hue and saturation, while
luminance may vary. In CIELab space, variations with such
characteristics are organized along a linewith a large spanof
luminances L and constant ratio of a and b values. We show
two such structures with simulated radiance variations for
two distinct hues.

Considering a complete scene under mixed illumination, local
radiance variations due to the shading are thus likely to concen-
trate around a few constant hue directions (with varying chroma
and lightness) that correspond to distinct illuminants. We aim at
detecting these meaningful lines within the collection of sampled
variations in CIELab space. Not only these structures will give
access to illumination colors but also to associated pixel locations.

Once obtained, these lines and associated locations provide a
powerfulmeans to edit illumination in the scene. To grade the image,
we can independentlymanipulate them to adjust illumination colors.
In contrast to previous work, this allows us to apply complex edits
with no need to estimate per-pixel mixtures of different illumination
colors or to perform intrinsic decomposition.

In practice, a challenge is to sample pixel pairs such that they
are likely to satisfy our two key assumptions: constant reflectance
and shared main illuminant across the pair. The spatial sparsity
of reflectance changes (while reflectances themselves can take a
multitude of values) and the limited number of illuminants in most
scenes suggest that suitable pairs should be found within image
fragments output by a fine-grained image segmentation. We opt for
an off-the-shelf super-pixel extractor and compute a small number
of variation samples within each super-pixel.
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As summarized below and explained in detail in Sections 4 and
5, our approach has three main steps: (i) Over-segmentation of the
image and sampling of radiance variations; (ii) Extraction of most
likely illuminant hues from the collected variations; (iii) Real time
interactive grading based on the identified illuminant hues. Our
only input is the single image to be edited, captured under mixed
illumination conditions. Intermediate results for several steps of
our algorithm are shown in Figure 2. Section 5.2 describes several
important optimizations to speed-up preprocessing steps (i-ii).

Sampling the variations (Section 4.1). We first segment the input
image using the super-pixel method of Duan and Lafarge [15] (Fig-
ure 2(b)). The geometry of these super-pixels is particularly adapted
to the sampling of relevant radiance variations, i.e., which are most
likely due to shading variations within the image. A visualization
of such variations is given in Figure 2(c).

Mining the variations (Section 4.2). We identify in the CIELab
opponent space the most likely illuminant hues based on the sam-
pled color variations (Figure 2(d-f)). Chrominance-based spectral
clustering of the collected data in this space and robust directional
analysis of each cluster, provide a set of illuminants, each with a
distinctive hue and associated super-pixels in the image.

Grading content (Section 5). The hue of identified illuminants
can be modified independently, with corresponding changes being
automatically applied to the appropriate image locations with the
help of a domain transform filter [21]. In order to preserve texture
details, these changes are applied to chrominance only, as done by
colorists.

We apply our method to a variety of challenging scenes, keeping
in mind the performance and quality requirements imposed by
production workflows. Typically, all the image pre-processing is
performed in less than 10 seconds, while subsequent editing can
be applied and visualized in real-time. Our approach is the first
to propose multi-illuminant editing of a single image, based on
fast, automatic image analysis. It offers a tool that complements
the usual toolset – rotoscoping, matting and keying – used by a
colorist.

4 EXTRACTING ILLUMINANTS
As briefly discussed in the previous section, we first sample local
radiance variations within small, homogeneous segments of the
image. To identify potential coloured illuminants, we then look for
chromatic similarities among these variations in an opponent color
representation. We provide next the details of these different steps.

4.1 Sampling Shading Variations
Selecting pairs of nearby pixels such that they have similar re-
flectance and that their shading difference in (4) provides useful
information on the incoming light is challenging. Choosing them
in the same object fragment, as the use of super-pixels will strongly
favour, is not sufficient. In order for their shadings to differ at all,
their surface normals should be different, e.g., they should not sit
on a nearly flat surface. Ideally, we would like to place these pixel
pairs near object visual boundaries, where the local changes of
normal direction are often more pronounced than in other regions.
In absence of geometric information on the scene, we will instead

p1

q

p2

p3

p4

p5

Figure 4: To sample color variations within each super-
pixel, all directions toward neighbouring super-pixels (gray
dashed lines) are sampled by positioning q at the centroid
and the p’s near the boundaries. (Photograph copyright:
Rémi Cozot.)

look for pixel pairs whose positioning in a super-pixel make them
more likely to be in this ideal configuration.

Over-segmenting the image into small homogeneous regions,
a.k.a super-pixels, has already proved very useful to compute single
image intrinsic decomposition [4, 20], where they help finding
areas of similar reflectance. For our purpose, we want in addition to
measure tangible and meaningful shading variations within super-
pixels. We must keep these considerations in mind when selecting
the segmentation technique.

K-means clustering [25], mean shift segmentation [13] and SLIC
super-pixels [1] are among the most popular over-segmentation
methods. However, we find the recent approach of Duan and La-
farge [15] more suited to our specific requirement of getting not
too uniform segments while, at the same time, respecting as much
as possible the structures in the image (the occlusion boundaries
in particular). The super-pixels in this approach are Voronoi cells,
i.e., they form convex polygonal regions defined by their centroids,
with borders aligned to strong contours when present. This unique
geometric feature provides natural sampling directions inside a
segment: Taking q as the centroid of a super-pixel, and moving as
far as possible in the cell along its edges in the associated Delaunay
tessellation (i.e., along the lines to the centroids of the adjacent
cells) is an efficient way to sample shading variations. See example
in Fig. 4 where five pairs (q,pi ), i = 1 · · · 5, are thus obtained.

Note that the segmentation method of [15] is parametrized by
the minimum distance between two centroids, a parameter that
controls in turn the final number of super-pixels. We set it to 20.0
pixels in all experiments, obtaining between 1000 and 1500 super-
pixels in average for 1000-pixel wide images. With this setting,
the size of the super-pixels suits our purpose (respecting well the
image structures while providing sufficient segment-wise shading
variations) and their limited number allows efficiency, as discussed
in Section 5.2

For each super-pixel, the sampling procedure provides as many
samples as it has neighbours. This results in an overall collection
of Ns RGB variations, |Iqn − Ipn | ∈ R

3
+, n = 1 · · ·Ns , with absolute

value taken component-wise and Ns amounting approximately
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to 5 times the number of super-pixels. An example of sampled
variations is shown in Fig. 2(c) where, for visualization purpose,
they are extrapolated through gradient-aware filtering.

4.2 Mining Variation Similarities
From the set of Ns samples, we now aim at inferring a small number
of dominant illumination hues that would best explain the shading
variation embedded in each sample. As discussed in Section 3, no
useful information can be directly extracted by conducting this
analysis in RGB due to the cross-channel correlation. Using instead
an opponent color space that separates chrominance from lightness
allows us to focus on chromatic variations, and later on, to apply
edits on chrominance, hence without affecting lightness within
the image. To this end, we project the collection of RGB variations
{|Iqn − Ipn |}

Ns
n=1 into the CIELab color space, yielding a new col-

lection of points {yn }Ns
n=1, where yn = [yan ,y

b
n ,y

L
n ]

⊤ is the CIELab
counterpart of |Iqn − Ipn | (Fig. 2(c)). We shall denote zn = [yan ,y

b
n ]

⊤

the chrominance part only.
We need to partition this collection of chromatic variations zns

into an unknown number of groups. To this end, we resort to
normalized cut [32], a variant of spectral clustering with automatic
determination of the number of clusters. We first construct the
symmetric order-Ns weight matrixW = [wmn ] defined by:

wmn = exp−
∥zm − zn ∥

2σ 2 , m,n = 1 · · ·Ns , (5)

where σ = 4.0 in all experiments. The similarity weight between
two chrominance variations is a decreasing function of their chro-
matic distance. The normalized Laplacian matrix is deduced from
W :

L = I − D− 1
2WD− 1

2 , (6)
where I is the order-Ns identity matrix and D = diag(d1 · · ·dNs )

is the diagonal matrix of degrees dn =
∑
m wmn . This matrix is

positive semi-definite with eigenvalues λ0 = 0 ≤ λ2 ≤ · · · ≤

λNs−1 and associated eigenvectors u0 · · · uNs−1. GivenK , the target
number of clusters, this eigen-decomposition is used to embed all
input vectors as follows: the n-th input vector zn is now mapped
to the n-th row of the Ns ×K matrixU = [u1 · · · uK ]. These K-dim
representations are clustered withK-means. The number of clusters
is automatically set as K = min{k : λk+1λk

≤ 0.97}.

As a result of previous step, CIELab variation samples {yn }Ns
n=1,

and associated super-pixels as in Fig. 6(b-e), are partitioned into
K groups, according to chrominance similarities. Based on our
assumptions, each of these clusters should be explained by a single
dominant illuminant with a distinct hue. Denoting Jk ⊂ (1,Ns ) the
index set of the k-th cluster, the set {yn }n∈Jk should accordingly
exhibit a one-dimensional structure that corresponds to a constant
huewith varying chroma and lightness. The estimation of this linear
structure is delicate: small variations, which form the majority of
the cluster, are noisier and much less informative than the few ones
with large magnitudes. In order to make robust the analysis, we
proceed iteratively. A first estimate of the 3D line is defined as the
one passing through the center of mass of the set and following
the most vertical among its three principal directions computed
through PCA (shown as red, green and blue axes in Fig. 2(e)), that
is the one capturing the largest span of lightness variations within

Figure 5: In the input image (a), three illuminant hues
where identified –see last row of Fig. 6–, and the yellow
one is modified with a green shift. This hue shift is ap-
plied to the sampling points inside the super-pixels attached
to this illuminant, and propagated to all pixels (b) to ob-
tain the grading (c). For visualization purposes, the propa-
gated chrominance shift is shown in RGB here. (Image from
Tears of Steel open source movie - (CC) Blender Foundation
| mango.blender.org)

the samples. The set is split in two parts by the plane normal to
this selected direction and passing through the center of mass. The
bottom subset is discarded and the procedure is iterated, until 15%
only of the original cluster is left. The final estimate is the line
joining the center of mass of the final sample set to the origin of
CIELab, as shown in yellow in Fig. 2(e). The intersection of this line
with the maximum lightness plane (L = 100) is used to compute
the hue of the illuminant for the cluster.

5 COLOR GRADING
Once the K dominant illumination hues and their respective zone
of influence (at the super-pixel level) are extracted, we can use
them to modify the illumination colors in the image. As we target
color grading workflows, two main requirements have to be met.
First, the edits should look natural and consistent with the image
structure. Second, the proposed tool should allow users to modify
parameters and control the resulting image look interactively. We
discuss next our design decisions in the light of these requirements.

5.1 Quality Grading
One of the critical constraints in a grading tool is the preservation
of details within images. For this reason, our approach is directly
inspired from the chrominance shifting method, used extensively
by colorists to grade content. This approach is also used in color
transfer methods for its ability to preserve the histogram shape [9].

For the editing part of our system, we remain in the CIELab color
space, to benefit from its separation of luminance and chrominance
information, and we assume input images are encoded in RGB
with a 2.2 gamma. Given a user-specified chrominance shift ∆ =
[∆a,∆b]⊤ to the k-th illuminant, this shift is first applied to all
sampling pixels pn , n ∈ Jk , on the inner border of super-pixels
that this illuminant dominates. Using these localized chrominance
shifts as soft constraints, a pixel-level field of shifts is computed
through structure-aware diffusionwith the “domain transformfilter”
[21], using the implementation proposed by [31]. We visualize
these chrominance shifts as an RGB propagation layer in Fig. 5(b).
Their application to the chrominances in the original input image
produces the grading. Choosing the domain transform filter has
three advantages:
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• It incorporates the localized target shifts as soft constraints
and propagates them in a soft manner;

• Yet, it is aware of the luminance discontinuities of the input
image, thus respecting its structure;

• Its implementation is based on a recursive filter, allowing
great performance on both CPU and GPU.

To further improve the coherency of the propagated chromaticity
shifts, the super-pixel labelling is pre-processed such as to eliminate
isolated labels: if the illuminant label k of a super-pixel is absent
from its direct neighbours, this super-pixel (and associated samples)
is relabelled according to the dominant label among its neighbours.
For super-pixels at the border of the image, which have fewer direct
neighbours, second-order neighbours are also taken into account
for assessing isolation.

The chrominance of all pixels is modified in the final image.
If only one illuminant is edited, as in Fig. 5, this modification is
stronger for pixels whose shading is dominated by the edited illu-
minant and more subtle, even indiscernible in some locations, for
other pixels. Also, note that since all modifications are applied to
the a and b channels in CIELab, the luminance of the image remains
unchanged, which is key to preserve the original detail of the input
image.

It should be noted that, although the edits of the image are
computed and applied in the a − b chrominance channels, we have
the flexibility to express the illuminant modification in any color
space and to translate it in terms of chrominance shift. As can
be seen in the accompanying video, we provide editing tools that
control a and b channels directly as well as tools operating in the
more user friendly HSV space. We show in Figure 8 a collection of
grading results that demonstrate the possibilities of our method on
a variety of scenes.

5.2 Performance
To allow for fast pre-processing and real time editing, several
choices and optimizations are necessary. For the interactive edit-
ing part, we take advantage of the recursive nature of the domain
transform filter. Its highly parallel nature for both GPU and CPU
allows real time manipulations.

A standard HD image typically produces about 4000-5000 super-
pixels, each of them containing about 5 sampling directions (di-
rections toward its neighbours). If all of them were sampled, the
weight and Laplacian matrices (Section 4.2) would be approximately
of size 25000 × 25000. It would not be possible to manipulate them
at reasonable speed (e.g., less than 1 second) on a current desktop
computer, not to mention on a mobile phone where memory would
be insufficient. For these reasons, we present several optimizations
of the illuminant extraction method described in Section 4.

To reduce the size of the weight and Laplacian matrices, we
first down-sample the input image, e.g., to size 1280 × 720, which
leaves us with about 1000 super-pixels. As explained in Section 4.2,
each super-pixel is sampled in several directions from its center, to
collect local chrominance variations. To reduce further the size of
the manipulated matrices, we replace, for clustering purpose only,
the samples from a super-pixel by a single representative one with
maximum amplitude in each channel, e.g., {|Iq − Ipi |, i = 1 · · · 5} is
replaced by max{|Iq − Ipi |, i = 1 · · · 5} in configuration from Fig.

Figure 6: Illumination hues detected by our algorithm for a
variety of scenes and the corresponding labeling per super-
pixel. (First image used with kind permission from Eugene
Hsu. Second image used with kind permission from Ivaylo
Boyadzev. Last four images from Tears of Steel open source
movie - (CC) Blender Foundation | mango.blender.org)

4, with max operator being applied entry-wise. However, note that
the complete set of Ns samples, around 5000 in total, is used for
inferring illuminants hues.

Finally, we also enforce the sparsity of the matrix L before the
eigen-decomposition by thresholding the similarity weights in Eq. 5.
We note that the Maltab eig function performs an eigen decom-
position of a 1000 × 1000 sparse matrix in less than 1s based on
the Intel Math Kernel Library. For this reason, our C++ application
links directly to Matlab.

6 EVALUATION
6.1 Psychophysical Evaluation
To evaluate the quality of our editing results we performed a
psychophysical experiment, following the two-alternative forced
choice (2AFC) methodology. In our study, the original grade and
an edited result were shown side by side. Participants were asked
to choose the image that they thought was the original color graded
image. The goal of this study was to assess whether our editing
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Figure 7: Summarized results per participant (left) and per
scene (right) for our psychophysical experiment comparing
original grades with our edited results. Correctness rates of
50% correspond to chance. Participants’ level of expertise is
denoted by the color of the bars in the left chart.

introduced artifacts or led to unnatural results, relative to the orig-
inal editing that was applied by the colorist. As such, the main
hypothesis was that if our results are natural, participants would
not be able to correctly distinguish which image was the original
colorist result, leading to 50% or less of correct answers.

Nine images were shown to 13 participants (10M/3F, age µ =
42.2,σ = 9.5), with various editing styles used for the modified
results, including both subtle modifications and strongly colored
edits. Figure 7 shows the average responses per participant and
grouped for each scene. The stimuli for this experiment can be
found in the supplemental materials. We observe that for most
scenes, correctness rates are at or below 50% (i.e., chance), indicating
that participants were not able to correctly identify the original
graded image. Generally, strongly colored edits were deemed as
less plausible, leading to higher rates of correct answers (e.g., clock
scene). Although most participants were able to correctly identify
more than half of the scenes, for the majority, performances were
only slightly above chance. No correlation was found between
correctness of answers and participants’ (self-assessed) expertise
in imaging. Overall, our experimental findings suggest that the
modifications achieved with our tool provide natural results that
are deemed as plausible by human observers.

It should be noted that many of the images used in our studywere
taken from the same content (Tears of Steel open source movie). As
such, it is possible that participants were additionally aided by the
fact that many images exhibited a coherent style in the unmodified
case, while our modifications went towards different directions in
each case.

6.2 Discussion
Our approach relies on building an approximate physical model
that permits plausible creative edits without recovering either the
reflectance or the incoming radiance per point. Our solution can
approximately estimate the hue of each illuminant affecting the
scene, however one limitation to this estimation is that emitting
surfaces within the image are not modelled. In the last example
of Fig. 6, the hue estimation of the brain in the foreground, which
is an emitting region, converged to the opposite CIELab direction

since an emitting purple surface is missing green to form white.
Nonetheless, our method still allowed us to manipulate this illu-
minant in a satisfactory fashion, as shown in Fig. 8, despite the
inverted estimation.

A second observation is that our correction layer is not produced
from hard constraints. Consequently, very localized shading varia-
tions might not be compensated for as a result, see in Fig. 8 (row
2) the man’s fingers in the right part of the image. Using soft con-
straints allows us to obtain results that remain plausible visually,
without determining precisely the influence of an illuminant per
image region.

A key motivation for our method is that it is aimed at artistic,
real-time edits, as would be necessary in a color grading session.
As such, algorithmic and design decisions have been made accord-
ingly, opting for results that are visually plausible, albeit not always
physically correct. A more accurate estimation of the illuminant in-
fluence and hue might be possible with more restrictive constraints
or more elaborate image analysis methods as preprocessing, how-
ever these would inevitably increase the computational complexity
of our approach.

7 CONCLUSION AND FUTUREWORK
We propose the first automatic method to detect multiple illuminant
hues and associated regions in a single input image. We put it at
work in a new color grading tool that gives intuitive control to
the user at interactive rates and produces high quality results, thus
meeting post-production requirements in terms of editing speed and
control intuitiveness. We demonstrate the merit of our approach
as a standalone tool for colorists and validate the quality of the
produced results by means of a psychophysical study.

At its core, the proposed approach lies on a sparse sampling of the
image radiance variations that allows us to build a physical proxy
model. This approximate model makes illumination editing possible
with no need to set up hard constraints or to perform intrinsic
decomposition. Further, it does not require additional knowledge
(assumed or measured) on the geometry of the scene and on indirect
lighting.

Our method has been so far demonstrated on still images, how-
ever an extension to video content would be possible by considering
an appropriate temporal smoothing approach, such as the blind
temporal consistency approach of Bonneel et al. [7]. To edit video
content, in accordance with typical color grading workflows, the
user would work on key frames selected from each shot. Edits could
be then propagated offline in a temporally consistent manner to
the rest of the frames.

Our method for analyzing scene illumination opens up other
possibilities. White balancing and inverse rendering in presence of
multiple illuminants are among the open problems that can directly
benefit from it. Progress in such directions will nonetheless require
the acquisition of ground-truth datasets with realistic scenes under
mixed illumination.
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